Exhaust aftertreatment technology for the combined reduction of particulates (PM) and nitrogen oxides (NOx): SCR® (Selective Catalytic Reduction technology with integrated particle reduction)

- PM-METALIT®
 - Highly effective for particle mass and number
 - Long lasting experience from series applications in cars and trucks
 - Robust design is ideal for non-road conditions
 - Compact system using highly effective DOCs
 - Requires no maintenance (depending on marginal conditions)

The PM-METALIT® has two functions:
- Particle reduction
- AdBlue® evaporation and preparation

SCR reduction of nitrogen oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO)

Exhaust aftertreatment of diesel engines: Modular system design

- Reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO)

Exhaust aftertreatment of diesel engines: Conversion of pollutants

- Diesel oxidation catalysts (DOC): Oxidation of hydrocarbons (HC) and carbon monoxide (CO)
- Precious metal coated high performance catalyst substrates

Highly effective diesel oxidation catalysts (DOC) for the reduction of HC and CO
- LS technology for oxidation and NOx reduction
- Reduction of pressure loss and fuel consumption (precious catalyst substrates)
- Geometric flexibility for optimum adaptation

Exhaust aftertreatment technology for the reduction of hydrocarbons (HC), carbon monoxide (CO) and particles (PM)

* SCR: Selective Catalytic Reduction

Particle filter:
- Filtering particles from the exhaust flow – application of regeneration of particle filters

Simultaneous reduction of nitrogen oxides (NOx), particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO)

Compact design in limited installation space

Optimization of gas flow and ammonia distribution in the PM-METALIT®

For further information and details please contact...
Exhaust aftertreatment technology for the combined reduction of particles (PM) and nitrogen oxides (NOx): SCR® (SCR technology with integrated particle reduction)

Highly effective diesel oxidation catalysts (DOC)
- Reduction of hydrocarbons (HC) and carbon monoxide (CO)
- Volume and cost reduction
- Reduction of pressure loss and fuel consumption (proportional to CO₂ emissions)
- Geometric flexibility for optimum adaptation

Diesel oxidation catalysts (DOC): Oxidation of hydrocarbons (HC) and carbon monoxide (CO) on precious metal-coated high-performance catalyst substrates

Particle reduction using the PM-METALIT®
- Highly effective for particle mass and number
- Long-lasting operation time in applications and trucks
- Robust design is ideal for non-road conditions
- Compact system using highly effective DOCs
- Requires no maintenance (depending on marginal conditions)

PM-METALIT® with dual function:
- Partial-flow deep-bed filter and hydrolysis catalyst as mixer.
- SCR catalyst behind continuous PM filtration: "Turbulent" structures allow more compact system.

Flow distribution behind standard substrate behind PM-METALIT®
- Optimization of gas flow and ammonia distribution in the PM-METALIT®

For further information and details please contact...
Exhaust aftertreatment technology for the combined reduction of particles (PM) and nitrogen oxides (NOx): SCR (Selectively Catalytic Reduction) technology with integrated particle reduction.

- High efficiency for particle mass and number
- Long lasting operation for various applications (cars and trucks)
- Modular design for easy retrofit applications
- Compact design along high efficiency levels
- Requires no maintenance (depending on marginal conditions)

The PM-METALIT® has two functions:
- Particle reduction
- AdBlue® evaporation and preparation

PM-METALIT® with dual function:
- Partial-flow deep-bed filter and hydrolysis catalyst as mixer.
- SCR catalyst behind continuous PM filtration:
 - “Turbulent” structures allow more compact systems.

For further information and details please contact...
Exhaust aftertreatment technology for the combined reduction of particles (PM) and nitrogen oxides (NOx): SCR with integrated particle reduction

PM-METALIT®
- Highly effective for particle mass and number
- Long-lasting experience from series application in cars and trucks
- Robust design is ideal for non-road conditions
- Compact system using highly effective DOCs
- Requires no maintenance (depending on marginal conditions)

For further information and details please contact
European legislation

Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (CO2 emissions) based on engine settings

Our latest publications and brochures, as well as further information on Emitec can be found at www.emitec.com
Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

European legislation
Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

European legislation
Emission directive for agricultural and construction machines

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

European legislation
Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

European legislation
Emission directive for agricultural and construction machines

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

European legislation
Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

European legislation
Emission directive for agricultural and construction machines

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

European legislation
Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

European legislation
Emission directive for agricultural and construction machines

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO2 emissions) based on engine settings.
European legislation

Emission directive for agricultural and construction machines

Heavy-duty non-road (97/68/EC ... 2004/26/EC)

Technologies for off-highway exhaust aftertreatment

Diesel engine emissions

Formation of pollutants during engine combustion

Particle and nitrogen emissions and also fuel consumption (= CO₂ emissions) based on engine settings

Our latest publications and brochures as well as further information on Emitec can be found at

www.emitec.com