NO\textsubscript{x} Adsorber Technology

Effective NO\textsubscript{x} storage requires total and uniform utilisation of the total catalyst volume. The NO\textsubscript{x} sensor that controls the process has to be integrated in the substrate and any NO\textsubscript{x} breakthrough must be prevented by a downstream safety reservoir.
The combustion process of lean-burn petrol and diesel engines operates with excess air so that their nitrogen oxide emissions cannot be removed by a conventional three-way catalyst. NO\textsubscript{x} emissions can be eliminated by a process of adsorptive storage of nitrogen oxides. As soon as the storage capacity has been exhausted the nitrogen oxides are reduced in a brief regeneration process. A NO\textsubscript{x} sensor integrated in the adsorber identifies the moment when regeneration must take place.

NO\textsubscript{x} breakthrough is prevented by integrating the sensor in the substrate in such a way that further storage volume is created behind it. Radial open structures consisting of PE or LS/PE foils are an essential feature of optimum nitrogen oxide reduction and ensure that the NO\textsubscript{x} sensor receives a representative signal and that the best possible use is made of the total storage volume.

Advantages:
- PE structure permits uniform utilisation of the total available catalyst volume
- This results in the highest possible degree of efficiency and durability
- A sensor located in front of a safety reservoir reliably prevents NO\textsubscript{x} breakthrough
- Utilisation of the positive properties typical of a Metalit®, e.g. with regard to canning and mechanical strength

Nitrogen oxides are stored by adsorption on a storage coating.

![Diagram of NO\textsubscript{x} adsorption and regeneration](image)

Nitrogen oxides are reduced during regeneration by reaction with carbon monoxide and hydrocarbons.
NO\textsubscript{x} Adsorber filling ratio

Uniform utilisation due to internal flow equalisation

A NO\textsubscript{x} sensor behind a standard substrate detects the need for regeneration only after a breakthrough.

Non uniform utilisation due to non homogenous flow

Relative velocity distribution:

- Low
- high

PE substrate with internal flow equalisation

A NO\textsubscript{x} sensor in a PE substrate detects the need for regeneration before a breakthrough.

Uniform utilisation due to internal flow equalisation
Germany (headquarters):
Emitec
Gesellschaft für Emissionstechnologie mbH
Hauptstraße 128
53797 Lohmar
Telephone: +49 2246 109 – 0
Facsimile: +49 2246 109 – 109

USA:
Emitec Inc.
3943 W. Hamlin Road
Rochester Hills, Michigan 48309
Telephone: +1 248 276 – 6430
Facsimile: +1 248 276 – 6431

Japan:
Emitec Japan K. K.
Cedar Shibaura 4 F
3-13-16 Shibaura, Minato-ku
Tokyo 108-0023
Telephone: +81 35 418 – 6066
Facsimile: +81 35 418 – 6080

India:
Emitec Emission Control Technologies
India Pvt. Ltd.
Survey No. 275 & 282 (Part)
Village Maan, Taluka Mulshi
Pune 411 057
Telephone: +91 20 3911 – 4800
Facsimile: +91 20 3911 – 4999

China:
Emitec Beijing Office
Representative Office:
No. 3 Mai Zi Dian Xi Road, Chao Yang District,
Towercrest Plaza, Room 919
TJ-100016 Beijing
Telephone: +86 10 646 – 74354
Facsimile: +86 10 845 – 80637

South Korea:
Emitec Korea Inc.
Room 901, Baek-Young Building,
630-19, Sinsa-Dong, Gangnam-gu
Seoul 135-896
Telephone: +82 2 517 9491 – 3
Facsimile: +82 2 517 9497

Further information:

Internet: www.emitec.com
E-Mail: info@emitec.com

Status: February 2008